第二百二十五章 是他?!-《万能数据》


    第(3/3)页

    所以说,作为数学系的学生,单靠在课堂上认真听讲,是远远不够的!

    如果想做出让人瞩目的成绩的话,你必须把每天空闲的时间拿出来,投身于数学这项伟大的事业上。

    比如说,上厕所的时候,一边尿尿,一边在脑海中构建抛物线的方程,计算正确落点。

    和女票XXOO时,还不忘用球面方程来计算罩杯的大小,同时计算你的长度和女票的深度,其间的差距是泰勒公式中的佩亚诺余项,施勒米尔希-罗什(Schlomilch-Roche)余项,还是拉格朗日余项,亦或是,柯西余项!

    咳咳,回归正题,回归正题。

    既然是讲题,程诺自然不能光顾着一个人在黑板上写。

    他嘴角扯出一个自认为很阳光灿烂的笑容,侧身对着讲台下那三十多位数学系的学生,一边写一边讲道。

    “其实,这道题目说不上有多复杂。”

    “首先,当f(x)=  0与f(x)=  1时,这道等式显然是满足要求的,这个毫无疑问。”

    “所以,剩下的重点,就是讨论次数大于1的情况。对吧?”

    讲台下,数学系的众人齐齐点头。

    这一点谁都知道。

    不过,问题的关键,是如何讨论次数大于1的多种情况。

    只见程诺一边说,一边在黑板上写。

    “由f(x2)=  f(x)f(x+1),若a是f(x)的根,则a也是f(x2)的根,也即a2是f(x)的根.”

    “于是a,  a2,(a2)2,((a2)2)2,...都是f(x)的根。”

    “但若f(x)非零,只有有限个根,存在m  小于n,使a^m  =  a^n,于是a^m·(a^(n-m)-1)=  0,有a=0,或a是单位根,……”

    程诺讲题的速度很快,几乎和廖之行的速度差不多。

    讲台下,大部分人都只是勉强跟上程诺的解题速度。

    教室第一排,坐在最边上的赵阳,抹了抹额头上的汗水,低头奋笔疾书的验证着程诺的计算步骤,试图找出程诺讲解步骤中的不足之处。

    讲台边,廖之行望着在讲台上滔滔不绝,颇有自己几分风范的程诺,满意的点点头。

    嗯,这个孩子,值得重点培养!

    廖之行觉得,自己以后有必要重点关注一下程诺。

    


    第(3/3)页